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Abstract
1.	 Ecological analyses typically involve many interacting variables. Ecologists often 

specify lagged interactions in community dynamics (i.e. vector-autoregressive 
models) or simultaneous interactions (e.g. structural equation models), but there 
is less familiarity with dynamic structural equation models (DSEM) that can in-
clude any simultaneous or lagged effect in multivariate time-series analysis.

2.	 We propose a novel approach to parameter estimation for DSEM, which involves 
constructing a Gaussian Markov random field (GMRF) representing simultaneous 
and lagged path coefficients, and then fitting this as a generalized linear mixed 
model to missing and/or non-normal data. We provide a new R-package dsem, 
which extends the ‘arrow interface’ from path analysis to represent user-specified 
lags when constructing the GMRF. We also outline how the resulting nonsepa-
rable precision matrix can generalize existing separable models, for example, for 
time-series and species interactions in a vector-autoregressive model.

3.	 We first demonstrate dsem by simulating a two-species vector-autoregressive 
model based on wolf–moose interactions on Isle Royale. We show that DSEM has 
improved precision when data are missing relative to a conventional dynamic lin-
ear model. We then demonstrate DSEM via two contrasting case studies. The first 
identifies a trophic cascade where decreased sunflower starfish has increased ur-
chin and decreased kelp densities, while sea otters have a simultaneous positive 
effect on kelp in the California Current from 1999 to 2018. The second estimates 
how declining sea ice has decreased cold-water habitats, driving a decreased den-
sity for fall copepod predation and inhibiting early-life survival for Alaska pollock 
from 1963 to 2023.

4.	 We conclude that DSEM can be fitted efficiently as a GLMM involving missing 
data, while allowing users to specify both simultaneous and lagged effects in a 
time-series structural model. DSEM then allows conceptual models (developed 
with stakeholder input or from ecological expertise) to be fitted to incomplete 
time series and provides a simple interface for granular control over the num-
ber of estimated time-series parameters. Finally, computational methods are 
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1  |  INTRODUC TION

Ecological systems typically involve many interacting variables. 
Scientists typically seek to understand how these variables will 
change given a hypothetical policy, experimental manipulation or 
global change scenario. These predictions require understanding 
how a change in one variable will cause a subsequent change in an-
other (termed ‘causal analysis’). Causal analysis has motivated the 
development of a tremendous range of analytical techniques includ-
ing structural equation, vector-autoregressive, instrumental variable 
and co-integration models (to name just a few).

Causal statistics in ecology and other disciplines is often inter-
preted using do-calculus (Pearl,  2009a). These methods involve 
defining a ‘causal map’, that is, a graphical model where variables 
are represented as boxes and causal mechanisms as arrows. 
Assuming that these mechanisms are all linear and all sampling 
units are statistically independent, the causal map then reduces to 
a structural equation model (SEM).1 SEM has been studied for over 
100 years (Wright, 1921, 1934) and debates continue about its re-
lationship with alternative approaches to study causality (Bollen & 
Pearl, 2013). SEM can include latent variables for which no obser-
vation is available, and these might include composite variables 
representing general theoretical concepts for which no direct 
measurement is possible (Grace & Bollen,  2008). SEM can also 
clarify the circumstances when a given causal effect is estimable, 
and if not, what additional ‘instrumental variable’ might render it 
estimable (Bollen et al., 2022). If the specified structural equation 
does not include loops (i.e. a directed acyclic graph) or missing val-
ues, then it can be solved using a sequence of piecewise regres-
sions. Piecewise regression is a common solution within ecological 
applications, for example, in the R statistical environment (R Core 
Team,  2017) using package piecewiseSEM for regression 
(Lefcheck, 2016) or phylopath for phylogenetic comparative meth-
ods (van der Bijl, 2018). However, piecewise regression cannot be 
fitted to data sets that include missing values, or in systems that 
include cyclic dependencies (i.e. causal loops).

Many methods for fitting SEM require the assumption that multi-
ple independent observations are available for a given system, either 
across space, time, species or involving other forms of replication. 

However, ecologists often deal with non-independent observations. 
Although ecologists are generally familiar with challenges posed by 
non-independence in terms of study design (Hurlbert, 1984), model 
validation (Roberts et  al.,  2017) or regression modelling (Brooks 
et al., 2017), fewer studies have discussed strategies to address non-
independence when studying causality among multiple interacting 
variables (although see Ives (2022) for some discussion). To address 
this, Thorson et al. (2023) developed methods to address phyloge-
netic correlations when estimating evolutionary trade-offs using 
missing or incomplete data using SEM. However, their method is not 
easily extended to time-series analysis where system variables have 
both synchronous and lagged effects.

We seek to develop a general ‘dynamic structural equation model’ 
(DSEM) that flexibly integrates information from ecological time se-
ries, cope with missing or non-independent data, while also providing 
the opportunity to tailor the analysis based on ecological knowledge. 
To do so, we first introduce ‘separable’ SEMs that combine structural 
equations and correlations across space, time or species, and general-
ize these to include ‘nonseparable’ covariance resulting from specify-
ing both simultaneous and lagged effects. We then introduce a novel 
and computationally efficient approach to parameter estimation for 
nonseparable DSEM, which involves constructing a Gaussian Markov 
random field (GMRF) and fitting this using a generic interface as a gen-
eralized linear mixed model (GLMM). We demonstrate this DSEM using 
a simulation experiment involving a bivariate vector-autoregressive 
model based on real-world predator–prey dynamics. We then apply the 
approach to a recently documented trophic cascade involving seastar 
wasting disease, and climate impacts on prey forage for a commer-
cially important fish. Methods are available as an R-package dsem on 
the Comprehensive R Archive Network (CRAN) (https://​cran.​r-​proje​ct.​
org/​web/​packa​ges/​dsem/​) using release 1.0.0 (Thorson, 2023), using a 
simple ‘arrow-and-lag’ notation to specify structural linkages and with 
package vignettes available to showcase features.

2  |  METHODS

Causal statistics in ecology and other disciplines typically in-
volve several steps that define putative causal relationships, esti-
mate dependencies among related variables and predict how each 
variable responds to changes in the others (Bollen & Pearl,  2013; 
Pearl,  2009a). The initial step defines a ‘causal map’, that is, a 

 1We follow Pearl (2012) in using the term ‘simultaneous equation model’ synonymously 
and see that paper for more discussion.

sufficiently simple that DSEM can be embedded as component within larger (e.g. 
integrated population) models. We therefore recommend greater exploration 
and performance testing for DSEM relative to familiar time-series forecasting 
methods.

K E Y W O R D S
causal model, graphical model, qualitative network model, simultaneous equation model, 
structural equation model, vector-autoregressive model
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graphical model where variables are represented as boxes and causal 
mechanisms as arrows. Assuming that these mechanisms are linear 
and data are available from multiple sampling units that are statis-
tically independent, the causal map then reduces to a structural 
equation model (SEM). This SEM represents dependencies among a 
vector of variables xi, measuring xi,j at sampling unit i ∈ {1, 2, … , I} 
for each variable j ∈ {1, 2, … , J}, for example, log densities at I  sites 
for J species. The analyst specifies a set of simultaneous equations 
among variables, xi = �xi + �i where �i is a J-length vector of residual 
(process) errors at site i  and � is the J × J matrix of path coefficients. 
Path matrix � is composed of path coefficients � j2,j1, where value � j2,j1 
implies that changing variable xi,j1 by amount Δ is expected to cause a 
change in variable xi,j2 by � j2,j1Δ. Assuming that exogenous variation �i 
follows a multivariate normal distribution �i ∼ MVN

(

0,��t
)

, we can 
solve for the Cholesky of the process-error covariance L = (I−�)

−1
� 

where � = LL
t is the expected J × J covariance Var

(

xi
)

 among vari-
ables across sampling units. SEM typically estimates parameters by 
calculating the sample variance S among replicated observations. 
Conventional SEM then specifies a Wishart probability density 
S ∼ Wishart(�, I) for sample variance and maximizes this log density 
with respect to parameters (Kaplan, 2001).

Various research has then extended SEM to include non-
independent observations. For example, Hershberger et  al.  (1996) 
proposed calculating a lagged covariance among measurements 
and then providing that as input to SEM-fitting software. Similarly, 
Cziráky (2004) proposed augmenting the SEM with lagged effects, 
reparameterizing all equations as a function of available observations 
and fitting that reparameterized model. These early approaches re-
quired complete data (no missing values). More recently, Asparouhov 
et al. (2018) fitted a generalized model including latent variables and 
missing data as a Bayesian hierarchical model, which they called ‘dy-
namic structural equation models’ (DSEM). This DSEM has been ex-
plored in several subsequent studies primarily in social sciences (e.g. 
McNeish & Hamaker, 2020). Relatedly, Thorson et al. (2023) applied 
a structural model for trade-offs among J species traits to calculate 
J × J trait-covariance �. They then combined this with the evolu-
tionary correlation among species represented using I × I matrix R, 
derived from phylogenetic comparative methods. This specification 
resulted in a joint covariance among IJ traits and species calculated 
as the Kronecker product R

⨂

� of these two processes.
Importantly, ecological dynamics often arise from a combina-

tion of simultaneous and lagged effects among system variables. In 
marine ecosystems, for example, juvenile predators often compete 
with the same prey that they later consume as adults (Walters & 
Kitchell,  2001). Therefore, an increase in prey density can have a 
positive simultaneous effect (due to increased forage) and a negative 
lagged effect (due to decreased juvenile survival) on predators. In 
simple time-series extensions to SEM, we could define a T × T co-
variance R over time and calculate the joint covariance V = R

⨂

� 
from the time-series correlation R and J × J covariance among vari-
ables �. However, specifying different lags results in a covariance 
that cannot be represented as the Kronecker product of two smaller 
matrices, such that the precision matrix (the inverse of the variance/

covariance matrix) is nonseparable, and this necessitates expanding 
the computational machinery beyond those of Thorson et al. (2023).

Here, we define a matrix of time-series observations Y where yt,j 
is the value in time t ∈ {1, 2, … T} and variable j ∈ {1, 2, … , J}, and 
we switch notation from I  sites to T times to emphasize the time-
series dependence among rows of Y. We specify a GLMM:

where fj is a specified probability density for each variable where 
�
(

yt,j
)

= �t,j and given dispersion parameters �j, g−1
j

(

�j + xt,j
)

 is 
the inverse-link transformation of a linear predictor that includes 
a mean �j and variation xt,j. We then specify GMRF for variation, 
vec(X) ∼ MVN(0,Q) where vec(X) stacks the columns of the T × J ma-
trix X into a single vector with length TJ, and precision Q is a TJ × TJ 
matrix that defines a distribution for vec(X). In some cases, Q is full 
rank (and therefore invertible) such that the covariance is calculated 
as Q−1 and the distribution is proper, and in other cases, Q is not full 
rank and the distribution for vec(X) is improper. We emphasize that our 
notation allows intrinsic GMRFs where Q is not full rank, for example, 
when specifying a random-walk process over time (Rue & Held, 2005 
Chapter  3) or specifying that exogenous variance is zero for some 
variables a priori. GMRFs are a computationally efficient approach 
to represent the covariance arising from some hypothesized process 
that operates locally, such that Q has many elements that are iden-
tical to zero (a ‘sparse’ matrix). Specifying a sparse precision Q arises 
throughout modern statistics, for example, when modelling a spatially 
correlated variable by approximating spatial autocorrelation as local 
diffusion (Lindgren et al., 2011).

We start by extending the path notation (Wright,  1934) that 
is common in structural equation models. Using a bivariate (J = 2 ) 
example where xt,1 = �1 + �t,1 with intercept �1 and error �t,1 and 
xt,2 = �2 + �2,1xt,1 + �t,2 defined similarly but where �2,1 is the slope 
linking xt,1 and xt,2, we could specify this succinctly in SEM arrow no-
tation as x1 ↔ x1; x2 ↔ x2; x1 → x2, and this can be parsed and fitted 
using standard R-packages (Fox, 2006; Fox et al., 2020). Extending 
this notation to include autocorrelation that differs between vari-
ables, we might instead specify the model xt,1 = �1 + �1xt−1,1 + �t,1 
and xt,2 = �2 + �2,1xt,1 + �2xt−1,2 + �t,2 by extending arrow notation as 
x1 ↔ x1; x2 ↔ x2; x1 → x2; x1 → x1 (1); x2 → x2 (1), where the number 
in parentheses specifies the intended lag and this is not convention-
ally included in arrow notation for SEMs.

This expanded arrow notation allows us to represent a wide 
range of common ecological models including vector-autoregressive 
models (VARs), dynamic factor analysis and structural equation 
models with a separable time-series autocorrelation (Figure 1). For 
example, VARs typically estimate a J × J matrix B that includes J2 
pairwise and lagged interactions (Ives et al., 2003). However, VARs 
do not typically estimate contemporaneous interactions (i.e. the co-
efficient �x2,x1 in the previous example). Instead, VARs capture con-
temporaneous effects via an estimated covariance matrix that does 
not have the mechanistic interpretation of SEMs and therefore does 

(1)
yt,j ∼ fj

(

�t,j , �j
)

gj
(

�t,j

)

=�j+xt,j
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not lend itself to comparing the magnitude or statistical significance 
of simultaneous vs. lagged interactions. Syntactically, this only re-
quires adding an extra column (for lags) to the standard ‘sem’ model 
specification (Fox, 2006).

Given this expanded arrow notation, we then convert a user-
specified set of lagged and simultaneous effects to a joint path ma-
trix �joint, which has dimension TJ × TJ where T is the number of years 
and J is the number of variables. Importantly, this matrix contains 
many zeros (i.e. is ‘sparse’) and is therefore computationally efficient 
to store and use. We also specify a variance �2

j
 for independent ex-

ogenous variation for each variable and construct a nonseparable 

TJ × TJ precision matrix, Qjoint =
(

I−�joint

)t
V

−1
(

I − �joint

)

 where 
V = IT ⊗ diag

(

�2
)

, diag
(

�2
)

 is the J × J diagonal matrix of exogenous 
variation �2

j
, IT is a T × T identity matrix. Importantly, we construct 

sparse precision Qjoint directly without having to construct or invert 
the covariance Q−1

joint
 and then specify the probability density for the 

vector of observations, vec(X) ∼ MVN
(

0,Qjoint

)

. Any two elements 
xt1,j1 and xt2,j2 for which Qjoint = 0 are then conditionally indepen-
dent. This implies that the analyst must explicit declare any causal 
dependency via the ‘lag-and-arrow’ notation that defines the joint 
path matrix �joint. From a scientific perspective, this allows analysts 
to be explicit in specifying any lagged or simultaneous mechanisms 
operating among variables. These explicit assumptions can then be 
confronted with data, where they might then be rejected if two vari-
ables are then found to not be conditionally independent.

In some cases, we also estimate the effect of an exogenous in-
tervention where some values of X are changed to X + �, and where 
� is the T × J matrix of experimental changes that might represent 
a single pulse experiment (i.e. �j,t ≠ 0 for the single time t of an ex-
perimental manipulation) or an ongoing press experiment (i.e. �j,t ≠ 0 
for all times after an experimental manipulation commences). We 
seek to predict how this intervention propagates across variables 
and through time via the estimated path coefficients �joint. To under-
stand this effect, we note that Qjoint is the precision resulting from all 
variables X being near their equilibrium. However, intervention � has 
the consequence that some variables deviate from this equilibrium. 
Specifically, this causes a first-order change in �jointvec(�) from equi-
librium, with a subsequent second-order change in �2

joint
vec(�), such 

that an exogenous intervention � ultimately results in a change in 
∑∞

k=1
�
k
joint

vec(�) =
�

I−�joint

�−1
vec(�) across all variables (as long as 

I − �joint is invertible). This term 
(

I−�joint

)−1 has many potential uses, 
for example, to predict the likely consequences of a press or pulse 
experiment (Bender et al., 1984) and is in fact called the Leontief ma-
trix when evaluating policy interventions using input–output models 
having a similar structure in econometrics (Miller & Blair, 2022). In 
particular, ecologists sometimes estimate dynamics that arise when 
a system starts at an initial condition that is far from this equilibrium. 
To estimate an initial condition that is far from equilibrium, we there-
fore estimate a vector of fixed effect �0 corresponding to an exoge-
nous intervention in the initial time. We then expand the second term 
of Equation 1 to be gj

(

�t,j

)

= �j + xt,j +
(

I−�joint

)−1
vec

(

�0

)

 where �0 
is a T × J matrix of zeros except that the row corresponding to the 
initial condition is replaced with �0. This allows us to predict how 
an initial condition x0 + �0 propagates across variables and through 
time following paths �joint (see Appendix A for a detailed explanation 
in a simple example). I − �joint is typically sparse, so we use a sparse 
LU decomposition to compute the product 

(

I−�joint

)−1
vec

(

�0

)

 with-
out forming 

(

I−�joint

)−1 in memory, and this allows us to calculate 
the effect of �0 even in models with many variables and/or times. 
Estimating initial conditions �0 requires that the term I − �joint is in-
vertible, although there is no such restriction when initial conditions 
are not estimated.

The resulting model therefore represents all times t ∈ {1, 2, … , T} 
and variables j ∈ {1, 2, … , J} in T × J matrix X, which is specified as 

F I G U R E  1  Graphical representation of a bivariate time-series 
model describing log abundance for a resource xt,1 and consumer 
xt,2 species, represented as vector xt in each time t. Dynamics could 
be represented using a vector-autoregressive (VAR) model with 
lagged interaction matrix B (top-left), a conventional structural 
equation model (SEM) applied to each time with path coefficients � 
(top-right), or a dynamic factor analysis (DFA) with loadings matrix 
L (bottom-left). The VAR assumes that all interactions are lagged, 
the SEM assumes that interactions are simultaneous, and the DFA 
estimates simultaneous associations while prespecifying a random 
walk for latent variable(s) zt. We introduce dynamic structural 
equation models (DSEM) which can include any combination of 
lagged and simultaneous effects among both original and/or latent 
variables, expressed via joint path matrix � and used to construct 
the precision of a Gaussian Markov random field. This DSEM is 
specified using an ‘arrow-and-lag’ notation and includes VAR, SEM, 
DFA and customized variants as nested submodels. Parameters 
are then estimated for all models by specifying an additional 
measurement process yt ∼ MVN

(

xt ,V
)

, although DSEM also allows 
a non-normal distribution for responses.

−1,1

−1,2

,1
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model
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Conventional structural 
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resulting from a GRMF with sparse TJ × TJ precision matrix Q. It 
then estimates parameters within a GLMM including (optionally) 
the net effect of initial conditions �0. We integrate across random 
effects using the Laplace approximation as implemented in TMB 
(Kristensen et al., 2016), optimize the marginal likelihood to identify 
parameters specified in the expanded arrow notation and calculate 
standard errors using a generalization of the delta method (Tierney 
et al., 1989). Equation 1 shows that DSEM is a GLMM wherein the 
random-effect precision is constructed from user-specified (simul-
taneous and lagged) effects. The Laplace approximation is widely 
used to estimate GLMM parameters, for example, in packages lme4 
(Bates & Maechler, 2009) and glmmTMB (Brooks et al., 2017) and 
Bates  (2011) notes that fitting a linear mixed model involves opti-
mizing a quadratic discrepancy function, such that the Laplace ap-
proximation will be exact when data are normally distributed. Path 
parameters in �joint are then identifiable thanks to the restriction 
that they are constant across time. Many authors have explored es-
timation methods for graphical models including SEM and Bayesian 
networks (e.g. Pearl,  2009b), but we cannot find reference to fit-
ting a structural equation model that involves lagged effects using 
the computational efficiency of a GMRF within a generalized linear 
mixed effects model.

We validate the DSEM software by comparing parameter esti-
mates (and standard errors) to alternative software using the follow-
ing case studies:

1.	 Klein-1 macroeconomic model: We first apply DSEM to a multi-
variate data set using the Klein-1 model (Kleiber & Zeileis, 2008) 
that includes both simultaneous and lagged effects. This data 
set has no missing data and therefore can also be fitted using 
a dynamic linear model using R-package dynlm (Zeileis,  2019). 
DSEM results in nearly identical estimates and standard errors 
(see Appendix  B). We also contrast DSEM using the Laplace 
approximation or MCMC for parameter estimation, the lat-
ter using STAN (Stan Development Team,  2023) via tmbstan 
(Monnahan & Kristensen,  2018). This confirms that the both 
methods result in similar parameter estimates.

2.	 Predator–prey dynamics: We next apply DSEM to a bivariate data 
set using a cross-lagged (a.k.a. vector-autoregressive) model. We 
specifically use real-world data for wolf–moose interactions on 
Isle Royale from 1959 to 2019, collected annually by the ‘Wolves 
and Moose of Isle Royale’ project (Vucetich & Peterson, 2012). 
This model includes only lagged effects, and there are no miss-
ing values, such that it can be fitted using using dynlm, R-package 
MARSS (Holmes et  al.,  2012) or R-package vars (Pfaff,  2008). 
DSEM again results in nearly identical estimates and standard 
errors (see Appendix C ‘Comparison with vector-autoregressive 
models’).

We therefore conclude that DSEM inherits the validation, as-
ymptotic properties and simulation testing that has previously been 
applied to those model configurations that can also be fitted by al-
ternative (less generalized) software. We therefore explore DSEM 

performance given missing data, which is not easily fitted using ei-
ther dynlm or vars packages.

2.1  |  Simulation experiment

We first present results from a simulation experiment involving 
the bivariate vector-autoregressive model for Isle Royale moose 
and wolf interactions. This is represented using lag-and-arrow no-
tation as x1 → x1(1), x1 → x2(1), x2 → x1(1) and x2 → x2(1). We first 
fit DSEM to samples of wolf and moose abundance on Isle Royale. 
We then use the S3 generic function simulate.dsem in package dsem 
to conduct a parametric bootstrap for each of 500 simulation rep-
licates, while leaving all parameters at their estimated values and 
resampling the GMRF X based on the precision Q resulting from es-
timated coefficients using real-world data. We specifically explore 
a hypothetical scenario where wolves are sampled less frequently 
that moose, and drop data for wolves in half of the years (selected 
randomly without replacement). For each replicate, we then refit the 
model using dsem or dynlm and record the four pairwise interactions 
from each model. In this ‘missing data’ scenario, DSEM estimates 
missing values as a state-space model while dynlm drops the associ-
ated observations. Results are intended to demonstrate the benefits 
of jointly estimating missing values and pairwise interactions (i.e. ac-
counting for missing data), and also to demonstrate the simulation 
capabilities provided by package dsem.

2.2  |  Case studies

We also present results when analysing two real-world ecologi-
cal data sets. These data sets were previously collected and pub-
licly available, and did not require additional permitting. Our first 
involves a well-documented trophic cascade in marine kelp eco-
systems (Steneck et  al.,  2002). In these ecosystems, sea urchins 
(Strongylocentrotus spp.) graze on large macroalga such as kelp 
(Macrocysystis sp.) and can reach high abundances and eliminate kelp 
canopies in the absence of predators. Urchins can sustain high abun-
dances even in low food environments by reducing energy allocated 
to reproduction. In California coastal ecosystems, the primary urchin 
predators are the Sunflower Seastar (Pychnopodia helianthoides) and 
Sea Otter (Enhydra lutris nereis), but the former actively seek out ur-
chins with high energy conditions associated with intact kelp forests 
(Smith et al., 2021a). P. helianthoides were decimated by the recent 
outbreak of seastar wasting disease, synchronously with the 2014–
2016 marine heat wave in the Northeast Pacific Ocean (Harvell 
et al., 2019). The collapse of P. helianthoides caused California coastal 
ecosystems to switch from a kelp-dominated to crustose corraline 
algae-dominated ‘urchin barren’ system (Burt et al., 2018).

We re-analyse time series for four species (sunflower seastars, 
sea urchins, sea otters and kelp) at each of 12 different sites, rep-
resenting J = 4 × 12 = 48 variables over T = 21 years. Counts of 
seastars, sea urchins and kelp are averaged from 2 m × 30 m transects 
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replicated at each site (Carr & Caselle, 2020) and available each year, 
while annual counts of sea otters are from a census conducted by 
the US Geological Survey (Hatfield et al., 2019). We analyse seastars 
densities (rather than their log density) because some sites have a 
value of zero in later years. We constrain path coefficients to be 
identical across sites and specify an impact of sea star densities on 
the log of urchin density, log-urchin densities on kelp and the log 
count of sea otters on kelp, for a total of three estimated path co-
efficients. We also estimate a different magnitude of first-order 
autoregression for each variable. This specification results in seven 
estimated structural parameters. We analyse data that are publicly 
available on Dryad (Smith et al., 2021b).

Our second case study estimates how physical variables and for-
age availability affects overwinter survival for Alaska pollock (Gadus 
chalcogrammus) in their first year of life in the eastern Bering Sea 
(EBS). Alaska pollock recruitment is affected by high mortality during 
their first winter, and juveniles prey upon large copepods and eu-
phausiids during the preceding summer and fall (Hunt et al., 2011). 
Predator–prey dynamics in the EBS are driven by the size of the pool 
of cold (<2°C) waters near the seafloor in summer (‘cold pool ex-
tent’), which is created by sea-ice production during the preceding 
winter (Stabeno et al., 2012). The cold pool then creates a thermal 
barrier to movement for predators from offshore winter spawning to 
onshore summer foraging habitats (Thorson et al., 2021).

We seek to estimate how climate affects the abundance of co-
pepod and euphausiid forage, driving juvenile pollock consumption 
of these species and affecting subsequent overwinter survival and 
recruitment. To analyse this multicausal system, we compile win-
ter sea-ice extent and summer Euphausiid densities from the 2022 
eastern Bering Sea Ecosystem Status Report (Siddon, 2022 fig. 29 
and 57), cold-pool extent from the R-package ‘coldpool’ (Rohan & 
Barnett, 2023), fall Calanus abundance and stomach-content sam-
ples for juvenile pollock from the Alaska Fisheries Science Center 
(Dave Kimmel, pers. comm.), and recruitment and spawning bio-
mass from the 2022 stock assessment for Alaska pollock (Ianelli 
et al., 2022 Tables 24 and 26). Pollock are also cannibalistic, so we 
assume that changes in spawning biomass (SSB) have a linear impact 
on log recruits per spawner (logRPS). Estimating this linear effect is 
equivalent to parameter � a linear reparameterization of the Ricker 
stock-recruit model Rt = �Ste

−�St+� where S is spawning biomass, R is 
recruitment, and � is a process-error term. Forage abundance and 
consumption is measured intermittently, and this suggests an anal-
ysis such as DSEM that jointly interpolates missing values and esti-
mates structural relationships.

3  |  RESULTS

The simulation experiment shows the improved precision for es-
timated species interactions when jointly estimating structural 
parameters and missing values, relative to fitting a dynamic linear 
model that drops missing data (Figure  2). Using the parametric-
bootstrap simulator and dropping half of the predator time-series 

measurements, we see that root-mean-squared-error (RMSE) is 
lower using DSEM for all four interaction parameters. For predator 
(wolf) impacts on prey (moose), the RMSE is decreased by nearly 
half (0.17 using dynlm vs. 0.11 using dsem) and similarly for prey 
density-dependence (0.17 using dynlm vs. 0.086 using dsem). In this 
latter case, both models have access to a complete time series for 
prey abundance, such that the improvement using DSEM arises from 
better discriminating predation (the cross-lagged interaction) from 
density-dependence (autocorrelation).

Fitting a ‘trophic-cascade’ model to time-series data shows 
that decreasing sea star density by 0.1 (per 2 m × 30 m transect) is 
expected to increase urchins to 100% × e−18.6×−0.1 = 640% of their 
former density (Figure 3). An increase in log-urchin density is sub-
sequently expected to decrease kelp densities, where both of these 
estimates are statistically significant using a two-sided Wald test. 
Finally, an increase in log count of sea otters is estimated to have a 
positive effect on kelp, although this effect is not statistically signif-
icant. We therefore conclude that replicated site samples are able to 
detect a significant and substantial ‘trophic cascade’ from sea stars 
through kelp densities.

Results for the Alaska pollock first-winter survival in the eastern 
Bering Sea confirm that sea-ice production has a positive effect on 
cold-pool extent, and a resulting positive effect on abundance for 
both large copepods and euphausiids (Figure 4). However, cold-pool 
extent has a larger effect on copepods than euphausiids, suggesting 
that copepods are a larger proportion of forage in cold than in warm 
years. Years with higher copepod densities also show significantly 
larger percentage of copepods in juvenile pollock stomach contents, 
while the impact of euphausiid densities on their consumption by 
juvenile pollock is not statistically significant (perhaps due to the less 
frequent data available for euphausiids). Finally, both copepods and 
euphausiids are predicted to have a positive effect on juvenile pol-
lock survival (and subsequent cohort strength). Finally, these mech-
anisms are estimated jointly while imputing missing values for forage 
densities in unsampled years, based on their covariance with other 
available variables and over time (Figure 5).

4  |  DISCUSSION

We have extended structural equation models for use in time-series 
analysis, which we call dynamic structural equation models DSEM 
(similar to Asparouhov et  al.,  2018). We also introduce an ‘arrow-
and-lag notation’ that extends existing SEM notation and allows 
generic specification of contemporaneous and lagged effects. This 
arrow-and-lag notation allows for high-level model specification that 
combines conventional SEM (including conventional linear models, 
instrumental variables and path analysis) with time-series analysis 
(e.g. vector-autoregressive models and dynamic factor analysis), 
thereby uniting two widely used families of ecological model. Linear 
models and their extensions (GLMMs and generalized additive mod-
els) are perhaps the most widely used statistical method in ecology, 
but ignore the ecological relationship among covariates that result in 
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collinearity. This collinearity then causes poor model transferability 
(i.e. extrapolation in space or time) whenever the patterns of col-
linearity change (Dormann et al., 2013). We hope that the ‘arrow-
and-lag’ notation improves the ease of use for SEM methods so 
that ecologists can apply structural modelling to explain collinearity 
within time-series analysis.

We then showed that DSEM can be specified using ‘arrow-and-
lag’ notation, which is parsed to construct the sparse precision ma-
trix for a GMRF, and this in turn is fitted within a GLMM. We first 
demonstrated how DSEM could fit a vector-autoregressive (a.k.a. 
cross-lagged) model for predator–prey interactions, and showed that 
jointly estimating interactions and missing data could improve sta-
tistical efficiency. We then demonstrated two ecological examples 
involving replicated measurements among sites (i.e. sea star trophic 
cascade), or multicausal attribution that includes lagged and simul-
taneous effects (i.e. forage and pollock recruitment). Our methods 
are available as R-package dsem, and we provide code and data to 
replicate these analyses as package vignettes.

One limitation of DSEM is that it assumes linear associations 
among variables. Methods are increasingly available to estimate non-
linear causality among multiple variables in ecological systems. For 
example, convergent cross-mapping has been used to predict sys-
tem properties in experimental settings (Deyle et al., 2016), although 

F I G U R E  2  Estimated pairwise 
interactions from a simulation experiment 
fitting a bivariate vector-autoregressive 
model to wolf and moose abundance, 
showing estimates of the lagged 
interaction matrix B (labelled panels), with 
simulation-model parameters fixed at 
estimated values when fitting to real-
world data from Isle Royale from 1959 
to 2019 and data simulated given new 
realizations of the GMRF representing 
true log abundance using the simulate 
function in package dsem. We specifically 
compare estimates of four pairwise lagged 
interactions for each of 500 simulation 
replicates, fitted using dsem (grey) or 
dynlm (green) when data are missing for 
wolves in half of years, and showing the 
root-mean-squared-error (top-left) or bias 
(top-right) for each estimator.

F I G U R E  3  Estimated path diagram, showing variables (names) 
connected by path coefficients (numbers, listing the estimated 
value and the p-value from a two-sided Wald test in parentheses) 
for the trophic-cascade model fitted to time series for log-sea otter 
counts (Otter), sunflower seastar densities (Seastar), log-urchin 
densities (Urchin) and log-Kelp densities (Kelp). Note that the path 
coefficient estimates shown here are specified as identical across 
all 12 sites that are treated as separate time series for each species 
(48 time series total).
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debates continue regarding the performance of these methods 
(Chang et al., 2021; Yang et al., 2018). Similarly, nonparametric and 
nonlinear interactions have been estimated using artificial neural 
networks to approximate nonlinear differential equations (Bhat & 
Munch,  2022; Bonnaffé & Coulson,  2023). However, it is hard to 
incorporate a priori system knowledge within these nonparametric 
and nonlinear methods (although see Dolan et al.  (2023) for prog-
ress involving convergent cross-mapping), and they typically require 
multiple generations to yield nonparametric estimates of the system 
attractor. Importantly, DSEM provides a simple and transparent in-
terface to impose restrictions on system causality, for example, by 
restricting some potential linkages to be zero and constraining others 
to be constant over time. Alternatively, previous studies have argued 
that linearity (e.g. in vector-autoregressive models) can be usefully 
interpreted as approximating system dynamics around an equilib-
rium and have derived system-level properties from the resulting 
‘community matrix’ (Ives et al., 2003; Wootton & Emmerson, 2005). 
We also note that other authors have incorporated interactions 
and nonlinearities within SEM (Holst & Budtz-Jørgensen,  2020; 
Schumacker, 2017), and we suspect that this is a feasible route to 
improve DSEM as well. For example, piecewiseSEM allows analysts to 
specify nonlinear responses within a non-recursive SEM. However, 

interpreting nonlinear direct and indirect effects is challenging be-
cause the relationships are modelled as smoothing functions instead 
of linear coefficients, and piecewiseSEM is restricted to models with 
complete data and without loops (as stated previously). DSEM there-
fore reflects our belief that ecologists will continue to use a combi-
nation of linear and nonlinear methods for analysing interacting and 
multicausal systems.

One benefit of DSEM relative to nonlinear methods is that it has 
a simple user interface (i.e. the ‘arrow-and-lag’ notation) and can 
be specified using little logical code (i.e. parsing the ‘arrow-and-lag’ 
notation to construct the GMRF, and then fitting this in a GLMM). 
We therefore argue that DSEM can be repurposed as a modular 
component within larger bioeconomic models. For example, stock 
assessment models (SAMs) for fishes and integrated population 
models (IPMs) for wildlife typically require specifying a demographic 
model as ‘motherboard’ and then plugging heterogenous data into 
this motherboard (Kéry & Schaub,  2021). These IPMs are often 
constructed to use covariates to explain or forecast demographic 
changes. However, this approach then ignores associations among 
available covariates, such that predictions may not represent the 
causal impact that includes both direct and indirect effects (Thorson, 
Hermann, Siwicke, & Zimmermann, 2021) and may not be transfer-
able when patterns of collinearity change (Dormann et  al.,  2013). 
We therefore encourage further research that incorporates DSEM 
to represent associations among covariates within IPMs. For exam-
ple, the model presented here for pollock recruitment could be in-
corporated directly within a state-space SAM, and this would allow 
fisheries managers to understand the direct and indirect impacts of 
climate change on this important commercial fishery.

In our presentation, we have emphasized a ‘causal’ viewpoint 
wherein DSEM is used to approximate structural linkages among in-
teracting variables. However, causal inference will be biased when 
structural assumptions are mis-specified, either due to unknown 
mechanisms or unrecognized latent variables (Pearl,  2009b). We 
therefore note an alternative ‘descriptive’ viewpoint, wherein DSEM 
offers a pragmatic interface with granular control over the number 
of estimated parameters when describing covariance in a multivar-
iate analysis. For C interacting variables, DSEM allows estimating 
from 1 to C(C + 1)∕2 parameters while flexibly specifying restric-
tions among those. This DSEM specification expresses covariance 
using slope coefficients, which can then be compared with results 
from other descriptive regression models or easily communicated to 
researchers and stakeholders (Thorson et al., 2023). We recommend 
that researchers adapt this ‘descriptive’ interpretation whenever do-
main knowledge is insufficient to justify a causal interpretation of 
DSEM.

Calls are increasing to integrate local, traditional and Indigenous 
knowledge when developing ecological models that will be used 
for real-world management (e.g. Yua et al., 2022). We argue that 
causal maps represent a natural and intuitive way to solicit feed-
back from stakeholders about natural systems. Conceptual mod-
els are widely used to communicate system understanding (e.g. 
Wassmann et al., 2020 for Arctic ecosystems). Conceptual models 

F I G U R E  4  Estimated path diagram, showing variables (names) 
connected by path coefficients (numbers, listing the estimated 
value and the p-value from a two-sided Wald test in parentheses) 
for the eastern Bering Sea, involving log of winter sea-ice extent 
(‘SeaIce’), log of summer cold-pool extent (‘ColdPool’), log-
Euphausiid densities in the summer acoustic survey (‘Krill’), log 
of large Calanus in the fall surface-trawl survey (‘Copepods’), the 
average percentage of Euphausiids and copepods in age-0 pollock 
stomach samples in the fall surface-trawl survey (‘Diet_Krill’ and 
‘Diet_Cop’, respectively), log recruits per spawners for Alaska 
pollock (‘Survival’) and spawning stock biomass for Alaska pollock 
(’Spawners’).
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that use boxes to represent variables and arrows to represent in-
teractions can then be represented as a qualitative network model 
(Levins, 1974; Puccia & Levins, 1985), and Levins  (1974) outlines 
how these can in turn be represented as a graphical model that 
approximates a set of nonlinear differential equations. We there-
fore argue that DSEM provides a convenient stepping stone to 
translate stakeholder input regarding contemporaneous or lagged 
drivers into a statistical model that can be fitted to noisy and in-
complete data.
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